Making a hydrophoretic focuser tunable using a diaphragm.

نویسندگان

  • Sheng Yan
  • Jun Zhang
  • Huaying Chen
  • Gursel Alici
  • Haiping Du
  • Yonggang Zhu
  • Weihua Li
چکیده

Microfluidic diagnostic devices often require handling particles or cells with different sizes. In this investigation, a tunable hydrophoretic device was developed which consists of a polydimethylsiloxane (PDMS) slab with hydrophoretic channel, a PDMS diaphragm with pressure channel, and a glass slide. The height of the hydrophoretic channel can be tuned simply and reliably by deforming the elastomeric diaphragm with pressure applied on the pressure channel. This operation allows the device to have a large operating range where different particles and complex biological samples can be processed. The focusing performance of this device was tested using blood cells that varied in shape and size. The hydrophoretic channel had a large cross section which enabled a throughput capability for cell focusing of ∼15 000 cells s(-1), which was more than the conventional hydrophoretic focusing and dielectrophoresis (DEP)-active hydrophoretic methods. This tunable hydrophoretic focuser can potentially be integrated into advanced lab-on-a-chip bioanalysis devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On-chip high-throughput manipulation of particles in a dielectrophoresis-active hydrophoretic focuser

This paper proposes a novel concept of dielectrophoresis (DEP)-active hydrophoretic focusing of micro-particles and murine erythroleukemia (MEL) cells. The DEP-active hydrophoretic platform consists of crescent shaped grooves and interdigitated electrodes that generate lateral pressure gradients. These embedded electrodes exert a negative DEP force onto the particles by pushing them into a narr...

متن کامل

Isolating plasma from blood using a dielectrophoresis-active hydrophoretic device.

Plasma is a complex substance that contains proteins and circulating nucleic acids and viruses that can be utilised for clinical diagnostics, albeit a precise analysis depends on the plasma being totally free of cells. We proposed the use of a dielectrophoresis (DEP)-active hydrophoretic method to isolate plasma from blood in a high-throughput manner. This microfluidic device consists of anisot...

متن کامل

Tuneable hydrophoretic separation using elastic deformation of poly(dimethylsiloxane).

This paper demonstrates a method for tuning elastomeric microchannels for hydrophoretic separation made in poly(dimethylsiloxane) (PDMS). Uniform compressive strain is imposed on the elastomeric microchannel between two acrylic substrates by fastening the bolts. The elastomeric microchannel can change its cross-section during compression, simultaneously tuning the criterion for hydrophoretic or...

متن کامل

Design of Novel High Sensitive MEMS Capacitive Fingerprint Sensor

In this paper a new design of MEMS capacitive fingerprint sensors is presented. The capacitive sensor is made of two parallel plates with air gap. In these sensors, the capacitance changes is very important factor. It is caused by deformation of the upper electrode of sensor. In this study with making slots in upper electrode, using T-shaped protrusion on diaphragm in order to concentrate the f...

متن کامل

All-Optical Reconfigurable-Tunable 1×N Power Splitter Using Soliton Breakup

In this paper, we numerically simulated a glass-based all-optical 1×N power splitter with eleven different configurations using soliton breakup in a nonlinear medium. It is shown that in addition to reconfigurability of the proposed splitter, its power splitting ratio is tunable up to some extent values too. Nonlinear semivectorial iterative finite difference beam propagation method (IFD-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomicrofluidics

دوره 8 6  شماره 

صفحات  -

تاریخ انتشار 2014